-
ouopio2 ha inviato un aggiornamento 3 anni fa
YOU MAY HAVE NOTICED THEM going up in your town’s streets and parking lots: a new generation of Galvanized Pole-mounted lights that pour down a cool torrent of lumens from an array of light-emitting diodes. Like me, you might have welcomed this development. LEDs are, after all, the most energy-efficient lighting option on the market. They can last twice as long as ordinary sodium-vapor streetlights, and their prices have dropped to within range of the competition.
If the switch to LEDs had needed any more support, it came from growing evidence about climate change. In the United States, Street Light accounts for a whopping 30 percent of all the energy used to generate electricity for outdoor lighting. Another 60 percent goes toward lighting parking lots and garages, and much of that energy is still produced by fossil-fired power plants. Consultants at the firm Navigant, in Chicago, have estimated that the United States could save 662 trillion British thermal units—the energy needed to power 5.8 million typical U.S. homes for one year—by converting all remaining non-LED outdoor lighting to LEDs.
Armed with statistics like these, and a mandate to cut energy use wherever they can, municipalities across the United States have installed more than 5.7 million outdoor LED street and area lights. Other towns and cities in Canada, Europe, and Asia have added millions more over the past decade. Amid this rush to adopt outdoor LEDs, the U.S. Department of Energy (DOE) stressed energy efficiency as the biggest advantage of the new technology while cautioning cities to also consider light output and color quality. But now that ordinary folks have got an eyeful of those new lights, some municipalities are coming down with a case of the early-adopter blues.
Lately, lighting companies have introduced LED Street Lights with a warmer-hued output, and municipalities have begun to adopt them. Some communities, too, are using smart lighting controls to minimize light pollution. They are welcome changes, but they’re happening none too soon: An estimated 10 percent of all outdoor lighting in the United States was switched over to an earlier generation of LEDs, which included those problematic blue-rich varieties, at a potential cost of billions of dollars.
The episode invites a few questions: How did an energy-saving technology that looked so promising wind up irritating so many people? Why has it taken so long for the impacts of blue-rich lighting to become widely known? And why did blue-rich LEDs so captivate municipal lighting engineers long before better options reached the market?
Early innovations in Solar Street Light were largely driven by brightness and convenience. The ancient Greeks and Romans lit terra-cotta oil lamps to illuminate their streets. Candles and oil lanterns brightened preindustrial cities, with some 3,000 streetlamps said to be used in Paris in 1669. In the early 1800s, whale-oil lamps and lanterns began to give way to relatively inexpensive gas streetlights, which were first installed throughout London, Paris, and St. Petersburg, Russia.
Not until the 20th century did engineers start worrying about efficiency. Brilliant arc lamps were the original electric streetlights in the late 1800s, but it took more practical incandescent bulbs to persuade most cities to replace gas streetlights with electric ones. These were gradually phased out for even higher-efficiency successors: mercury-vapor lamps starting in 1948, and then high-pressure sodium in 1970.
The bluish LEDs were a stark counterpart to the orangish high-pressure sodium Garden Lights that came before them. Switching from the warm sodium lights to those LEDs was like going from a subtropical sunset to high noon at the equator.
https://www.bswlight.com/garden-light/
Attività
Condividi sui tuoi social