-
ouopio21 ha inviato un aggiornamento 2 anni, 11 mesi fa
lens, in optics, piece of glass or other transparent substance that is used to form an image of an object by focusing rays of light from the object. A lens is a piece of transparent material, usually circular in shape, with two polished surfaces, either or both of which is curved and may be either convex (bulging) or concave (depressed). The curves are almost always spherical; i.e., the radius of curvature is constant. A lens has the valuable property of forming images of objects situated in front of it. Single lenses are used in eyeglasses, contact lenses, pocket magnifiers, projection condensers, signal lights, viewfinders, and on simple box cameras. More often a number of lenses made of different materials are combined together as a compound lens in a tube to permit the correction of aberrations. Compound lenses are used in such instruments as cameras, microscopes, and telescopes.
Optical principles for lenses
A optical lens produces its focusing effect because light travels more slowly in the lens than in the surrounding air, so that refraction, an abrupt bending, of a light beam occurs both where the beam enters the lens and where it emerges from the lens into the air.
A single lens has two precisely regular opposite surfaces; either both surfaces are curved or one is curved and one is plane. Lenses may be classified according to their two surfaces as biconvex, plano-convex, concavo-convex (converging meniscus), biconcave, plano-concave, and convexo-concave (diverging meniscus). Because of the curvature of the lens surfaces, different rays of an incident light beam are refracted through different angles, so that an entire beam of parallel rays can be caused to converge on, or to appear to diverge from, a single point. This point is called the focal point, or principal focus, of the lens (often depicted in ray diagrams as F). Refraction of the rays of light reflected from or emitted by an object causes the rays to form a visual image of the object. This image may be either real—photographable or visible on a screen—or virtual—visible only upon looking into the lens, as in a microscope. The image may be much larger or smaller than the object, depending on the focal length of the lens and on the distance between the lens and the object. The focal length of a lens is the distance from the centre of the lens to the point at which the image of a distant object is formed. A long-focus lens with beamsplitters forms a larger image of a distant object, while a short-focus lens forms a small image.
Usually the image formed by a single lens is not good enough for precise work in such fields as astronomy, microscopy, and photography; this is because the cone of rays emitted by a single point in a distant object is not united in a perfect point by the lens but instead forms a small patch of light. This and other innate imperfections in a lens’s image of a single object point are known as aberrations. To correct such aberrations, it is often necessary to combine in one mount several lens elements (single lenses), some of which may be convex and some concave, some made of dense high-refractive or high-dispersive glass, and others made of low-refractive or low-dispersive glass. The lens elements may be cemented together or mounted at carefully calculated separations to correct the aberrations of the individual elements and obtain an image of acceptable sharpness (see also aberration). The precise mounting also ensures that all lenses are properly centred; that is, the centres of curvature of all the lens surfaces lie on a single straight line called the principal axis of the lens. A frequently used measure of the quality of any lens system is its ability to form an image that is sharp enough to separate, or resolve, two very close dots or lines in an object. Resolving power depends on how well the various aberrations in a lens system are corrected.
http://www.visopto.com/beamsplitters/
Attività
Condividi sui tuoi social